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Abstract

Magnetic Resonance Imaging, a popular noninvasive di-
agnostic procedure, is not currently used in some applica-
tions due to the duration of the scan. In many of these appli-
cations the pathology is highly localized, yet while the data
is collected in the frequency domain (k-space) that must be
fully sampled, its under-sampling leads to distorted recon-
structed images. Increasing the speed of MRI has been ap-
proached by training deep learning models (U-Net, DDPM,
Cold Diffusion) to reconstruct under-sampled (and hence
faster to collect) k-space data. We propose to further im-
prove the quality of the reconstructed images by locating the
Region-of-Interest (ROI) and weighting the learning rate in
the ROI to focus training of the model on the pathology re-
gion. We proved the concept with U-Net model, using both
manually chosen ROI and one detected by the Sobel edge-
detecting operator, where improvement in the image qual-
ity characteristics (SSIM, NMSE, and PSNR) were demon-
strated. The same approach was further applied to a Cold
Diffusion model.

1. Introduction & Background

Throughout the past several decades, Magnetic Reso-
nance Imaging (MRI) has gained a wide popularity among
physicians and patients as a non-invasive diagnostic tool
that, in many applications, is capable of providing more
comprehensive and accurate diagnostic information than al-
ternative methods, such as Computer Tomography or Ul-
trasound [1]. Despite multiple advantages of MRI, it has
several disadvantages, with long scanning times and high
monetary cost being arguably the main ones, that have pre-
vented the use of MRI in some applications. To mitigate
these limitations, scientists, engineers and physicians have
been working to improve the technical characteristics of the
scanners and imagining techniques, e.g. by increasing the
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magnetic field within the scanner from 0.2 to 7T or by in-
troducing multichannel imaging [2]. Although improving
the physical characteristics of imaging equipment remains
an active area of academic and industrial research, there are
still applications where the use of MRI is prohibitively long
and expensive. For example, knee MRI may take more than
an hour, during which time the patient should be completely
still. However, in the case of the knee, the pathology is
highly localized and it would suffice to concentrate only on
the area of possible pathology. However, this is not possi-
ble using conventional methods because during the scan,
the data is collected in the frequency domain (so-called
“k-space”, please refer to [3] for detailed discussion) that
should be fully sampled. Its undersampling leads to the im-
age distortion called Shannon-Nyquist aliasing [4], rather
than to the image with lower resolution.

The latest advances in the area of Machine Learning in
general and Deep Neural Networks in particular brought re-
search aimed at reducing MRI scan times to a new level.
For example, advanced progress was achieved in collab-
oration between Meta and the NYU Center for Biomedi-
cal Imaging [2] where the researchers used undersampled
MRI data to train deep learning models to reconstruct full-
resolution MRI scans. An extended version of this dataset,
called fastMRI+ [5], was released by Stanford and includes
expert annotations such as bounding boxes for pathology in
knee and brain MRI scans.

Recently, Denoising Diffusion Probabilistic Models
(DDPM) [6] gained popularity due to their ability to gen-
erate and reconstruct images. The idea behind DDPM is
that the model is trained to de-noise images that were dis-
torted by adding a random Gaussian noise. This technique
was also successfully applied to fast MRI [7].

More recently, the Cold Diffusion technique was intro-
duced [8]. The term “Cold” means that the added noise
is not random but deterministic, e.g. Blur or Snow. G.
Shen, et al. [9] trained the diffusion model on fully sam-



pled knee MRI images by applying progressively under-
sampling mask on the raw k-space data. This technique
allowed the authors to achieve superior image quality (mea-
sured in terms of Peak Signal-to-Noise Ratio (PSNR) and
Structural Similarity Index Measure (SSIM)) compared to
previously used methods (U-Net, W-Net, and E2E-VarNet).

Our contribution was motivated by the fact that, as previ-
ously mentioned, in many practical cases (e.g. for knee) the
pathology is highly localized, therefore the performance of
the reconstruction neural network may benefit from focus-
ing on the Region-of-Interest (ROI). This can be achieved
by weighting the loss function applied to ROI differently
compared to the rest of the image. We first tested our hy-
pothesis on a U-Net model training with “naively” cho-
sen ROI in the center of the image and observed a mod-
est but noticeable improvement in the image quality met-
rics (PSNR and SSIM). We further applied the loss weight-
ing based on the Sobel edge-detecting operator [10] that al-
lowed to generalize the choice of ROIL.

Inspired by the improvement observed when the loss
function is ROI-weighted in the U-net model, we applied
the same idea to the Cold Diffusion model, where equally-
weighted L1 loss was originally used. We believe that fo-
cusing on the ROI should improve the Cold Diffusion knee
image reconstruction from the under-sampled k-space even
further.

We trained our model on the publicly available fastMRI
[2] single-coil knee MRI dataset. Each file includes mul-
tiple 2D slices of a knee scan, along with metadata. The
dataset contains over 1,500 fully sampled knee MRI scans
collected at NYU Langone Health on Siemens 3T and 1.5T
scanners[ | 1]. It was designed to support research in accel-
erated MRI reconstruction, aiming to improve scan speed
without sacrificing image quality. The data did not require
any preprocessing and can be used for model training di-
rectly, without additional cleaning or alignment. However,
potential limitations include the lack of demographic infor-
mation (e.g., age, sex, ethnicity), which may obscure biases
in patient representation, potentially affecting model gener-
alization across diverse populations.

Radiologists and patients would benefit directly from
this. Radiologists will have access to faster and more ac-
curate scan results, and patients will spend less time and
money doing this procedure. If our improvements work,
they could push this already promising technology even fur-
ther, making MRIs more practical and accessible to people
all over the world.

2. Approach

Our approach consisted of improving the Cold Diffusion
framework (applied to the reconstruction of undersampled
MRI scans by G. Shen, et al. [9]) by employing an ROI-
weighted loss function. The proof of concept was first ob-

tained on the fastMRI U-Net model [2] where the weighting
of the loss function showed improvement in image qual-
ity metrics such as the Peak Signal-to-Noise Ratio (PSNR),
Normalized Mean Squared Error (NMSE), and Structural
Similarity Index Measure (SSIM).

2.1. ROI-Weighted Loss

In this approach we focused on modifying the U-Net
model Meta provided [ | 2], to prioritize the ROIs during im-
age reconstruction instead of treating the entire image the
same. This approach involved creating a binary mask over
the ROI and used it to modify the loss function by increas-
ing the contribution of pixels within the ROI using equa-
tion 1.

roi_loss = (1 + (o — 1) - roi_mask) - base_loss (1)

Here, « is a new hyperparameter we introduced to con-
trol the weight given to the ROI during training. Its effect is
defined as:

* o = 1.0: No change, the ROI contributes equally to
the loss as the rest of the image. roi_loss = base_loss.

* o < 1.0: The ROI is underweighted. Its contribution
to the total loss is reduced. roi_loss < base_loss.

e a > 1.0: The ROI is upweighted. It contributes more
to the total loss. roi_loss > base _loss.

We used L1 loss to compute the base loss because it is
less sensitive to outliers than L2 loss and tends to produce
sharper images. This aligned well with our approach, as
it helps preserve the overall structure without introducing
unnecessary blurring from large error terms.

To test the success of this approach we made two im-
plementations, a naive implementation and an edge-based
implementation.

Naive ROI-Weighted Loss

For this, we manually defined the roi_mask as a fixed square
at the center of each MRI image. Since knee scans are typi-
cally centered, we assumed this would reasonably approxi-
mate the location of the joint across most slices. In this im-
plementation, we treated the knee joint as the only region
of interest (ROI) and only upweighted the loss contribution
within that region.

To validate the effectiveness of this approach, we trained
the U-Net model on 1% of the single coil knee MRI dataset.
We used Meta’s default training configuration for consis-
tency as shown in Table B.1.

We tested the following combinations of « and square
ROI size to assess this naive strategy:

¢ Alpha Values: {0.25, 0.75, 1.0, 1.25, 2.0}



* ROI Sizes: {60, 80, 100, 120}

We anticipated that the square mask wouldn’t always
align with the joint, especially in the earlier slices, but
we prioritized this simple implementation to determine
whether the idea of region-weighted loss was even worth
pursuing.

One challenge we encountered during this
phase was reproducibility. Even after setting
pl.seed.everything (), we weren’t always able
to get identical results across runs. We believe this was
mainly due to randomness in the mask_func used during
training, as well as the sampling of different 1% subsets
of the dataset. We weren’t able to fully resolve this, so as
a workaround we modified the training script to first load
the dataset and then share the same DataLoader across
different training runs. This helped ensure that models
were trained on the same data slices. Due to time and
resource constraints on the PACE cluster, we re-trained the
a = 1.0 baseline model alongside each experimental run to
maintain a consistent baseline for comparison.

Edge-Based ROI-Weighted Loss

If the modified loss function showed good results, then we
will implement a more robust method using Sobel filter-
ing to automatically detect edges in the MRI slices. The
Sobel edge detection method applies two 3x3 convolution
kernels to compute gradients in the horizontal and vertical
directions. These gradients are combined to calculate the
gradient magnitude, which highlights edges in the image.
A threshold is applied to the normalized gradient magni-
tude to create a binary edge map, where pixels above the
threshold are marked as edges. To form a broader ROI, the
edge map is dilated using a square kernel, expanding the re-
gion around detected edges to include surrounding anatom-
ical structures critical for reconstruction. The resulting ROI
mask is a binary tensor with 1s in the ROI and Os elsewhere,
applied to the L1 loss using Equation 1 with the hyper-
parameter « controlling the weighting. This will generate
more accurate ROI masks around the actual knee structures
instead of relying on a fixed square.

2.2. Cold Diffusion

Conventionally, the diffusion models use a Markov
chain to convert the noise distribution to the data distribu-
tion. It has the form of pg (xo) := [ pg (Xo.7) dx1.7 Where
X1, ... ,Xp are latent variables of the same dimension-
ality as the data distribution xg ~ ¢ (xp). The reverse
process pp (Xo.r) is a joint distribution and is defined as
a Markov chain with learned Gaussian transitions starting

with py (x7) = N(x7;0,1):

T
Po (xo.1) == po (x7) H (xe—1lpe (x¢)) ,

po (Xe—1|x) = N (thl;ﬂﬁ (x¢,1),071) 2)

The forward or diffusion process is the approximate pos-
terior ¢ (X1.7|Xo), which is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a
variance schedule (3 ,... ,0 7

T
(x1:7[X0) : Hq (x¢—X¢-1)
t=1

q (Xt—Xt71) =N (Xt; V1= Bixe_1, 5t1) (3

In practice, the forward process is achieved by gradually
adding Gaussian noise following the variance schedule.
This process does not encounter learnable parameters. The
reverse process, on the other hand, is implemented with a
learnable deep neural network.

A. Bansal er al. [8] showed that it is possible to train
the de-noising model in the case of the deterministic (or
“called”) noise. We followed the approach of G. Shen, et
al. [9] who used Cold Diffusion for image degradation and
restoration. Given an image Xg, consider a degradation op-
erator D with severity ¢; then the degraded x; = D(xq, t)
should vary continuously in ¢ and the degradation should
satisfy D (xg,0) = xo. To reverse this process and generate
an image, the restoration operator R approximately inverts
D and has the property of R(x;,t) & Xg. The restoration
operator R is implemented via a deep neural network in
practice and parameterized by 6. This network can then be
trained via the minimization problem:

minkE || Ry (D (x,1),1) = x| @

Once the degradation is chosen and the network is
trained properly to perform the restoration, the network can
be used to sample images from the degraded image.

In Cold Diffusion, x; is sampled via intermediate vari-
ables:

Xt—1 :Xt—D(i\o,t)—FD(;(\(),t—l) (5)
This sampling strategy is beneficial especially when the
higher-order terms in the Taylor expansion of the degrada-
tion D (x,t) are non-negligible. It enables more reliable re-
constructions for Cold Diffusion models with a smaller total
step number 7" and a variety of image restoration operations
such as deblurring, inpainting, super-resolution, snowifica-
tion, etc. [8]



Application of Cold Diffusion to MRI Image Recon-
struction

MRI scanner acquires measurements in the frequency do-
main (k-space) that relates to the image via Fourier trans-
formation:

k=F(x)+e (6)

where F is the Fourier transformation operator and € is the
measurement noise. The MRI acquisition speed is limited
by the amount of k-space data to obtain. This acquisition
process can be accelerated by down-sampling only a por-
tion of the k-space data. However, this may lead to aliasing
artifacts after applying the inverse Fourier transformation to
reconstruct the image [3].

In order to mitigate such image degradation, the Cold Dif-
fusion model is trained to reverse such degradation:

Xo = R(x¢,t) = R (F ' (Mo k),t) (7

where F ! is inverse Fourier transform, M; is the sampling
mask, and o indicates Hadamard product. Then, equation 5
is used to predict the fully sampled reconstruction Xq [9].

Our main challenge in implementing the Cold Diffusion
model was computational resources. It took the authors
of the original paper [9] eight days of continuous training
with a powerful GPU - 1 second per step - to fully train
the model, while training on the PACE cluster was taking at
least twice as long per step, even with two GPUs. Therefore,
we reduced training to 35,000 steps, in contrast to 700,000
steps in the original paper, and only used 10% of the train-
ing data. We also had a similar challenge of reproducibil-
ity, as outlined in Section 2.1, and similar steps were taken
with the DataLoader to ensure uniform data slices during
training, and testing metrics were averaged out over several
runs.

2.3. Evaluation

To evaluate model performance, we compared the fol-
lowing metrics:

e SSIM (Structural Similarity Index) — We used this
to evaluate structural consistency in reconstructed MRI
images.

¢ NMSE (Normalized Mean Squared Error) — We
used this to compare pixel errors between the original
and reconstructed MRI images.

¢ PSNR (Peak Signal-to-Noise Ratio) — We used this
to comparing the noise introduced during reconstruc-
tion versus the strength of the original signal.

We expected that upweighting the loss in the ROI would
lead to improvements across all three metrics by reducing
noise in the joint area, preserving key anatomical features,
and balancing global accuracy with localized focus.

3. Frameworks and Codebases Used

We used PyTorch and PyTorch Lightning as our deep
learning frameworks. Both Meta’s fastMRI repository [12]
and the Cold Diffusion implementation repository [13] are
built on these frameworks, which made it easier to work
with.

The fastMRI repository provided a well-organized,
production-ready codebase with clear abstractions for deep
learning models, example scripts for the modules, custom
data loaders, and a wide variety of parameters. This gave
us a great starting point to build from once we were able
to get through the tricky set up. The code was written in
an older version of PyTorch and PyTorch Lightning, which
created a lot of debugging and dependency issues. Resolv-
ing these version mismatches was one of the early chal-
lenges of the project, but once resolved, extending the code-
base became significantly easier. We used and modified the
U-Net model module heavily for our experiments with ROI-
weighted loss.

The Cold Diffusion codebase was less structured than
fastMRI but still useful. It used more recent versions of
PyTorch and PyTorch Lightning making the setup sim-
pler. While this conflicted with fastMRI’s older dependency
stack, the code helped us understand how Cold Diffusion
works in practice. We followed their Cold Diffusion logic
closely when adapting it into our own fastMRI-based train-
ing pipeline.

4. Experiments and Results

4.1. Naive ROI-Weighted Loss

We compared each alpha and ROI configuration against
the baseline loss using SSIM, NMSE, and PSNR. Table 1
shows the top 5 alpha and ROI size combinations that max-
imized SSIM and PSNR while minimizing NMSE.

o | ROISize | SSIM | NMSE | PSNR
1.25 100 0.7135 | 0.0366 | 31.45
1.00 - 0.7130 | 0.0366 | 31.44
0.75 100 0.7125 | 0.0366 | 31.45
0.75 80 0.7116 | 0.0371 | 31.34
0.25 100 0.7114 | 0.0369 | 31.39

Table 1. Top configurations sorted by SSIM and NMSE

These results suggest that o = 1.25 with roi_size = 100
slightly outperforms the baseline (v = 1.0) model. Since
these results were promising, we retrained the baseline
model with parameters more closely to the best parameters
defined by Meta. Due to the resource constraints we expe-
rienced, we modified the parameters as shown in Table B.2.

While the differences are subtle, the upweighted loss
with o = 1.25 outperformed the base model in all metrics
as shown in Table 2. Figure C.1 shows a comparison be-



a | ROISize | SSIM | NMSE | PSNR
1.25 100 0.723 | 0.034 | 31.870
1.00 - 0.721 | 0.035 | 31.843

Table 2. Comparison of best-tuned ROI-weighted loss vs. baseline

tween reconstruction in the ground truth vs baseline model
vs ROI-weighted output.

We ran both the tuned models on unseen data to test their
generalization. The ROI-weighted model came out slightly
ahead with a loss of 0.2918 compared to the baseline model
with a loss of 0.2923. Focusing just on the ROI region, the
gap widened a bit more with 0.3300 for the baseline model
vs. 0.3292 for the ROI-weighted model. This further sup-
ports our hypothesis that giving more importance to the ROI
during training helps the model generalize better, especially
in localized regions.

Despite being a naive implementation, this approach pro-
duced measurable improvements in the key metrics SSIM,
NMSE, and PSNR while generalizing better on unseen data
than the baseline model. These results encouraged us to de-
velop a more sophisticated variant using Sobel filtering for
dynamic ROI detection.

4.2. Edge-Based ROI-Weighted Loss

To enhance the naive ROI approach, we implemented an
edge-based ROI loss using Sobel filtering to dynamically
detect knee structures. We visualized edge maps to select a
Sobel threshold of 0.4, which effectively covered the knee
region (see Figure C.3). We conducted a grid search over
hyperparameters o € {0.25,0.75,1.0,1.25,1.5} and So-
bel threshold € {0.3,0.4,0.5}. Dilation size was fixed at
9. Due to randomness in data loading, performance varied
slightly across runs. Table 3 shows all configurations sorted
by SSIM.

The best configuration (o« = 1.5, Sobel threshold=0.3)
appears to outperform the naive ROI approach and baseline
approach seen in Table 1, and has the best SSIM, NMSE,
and PSNR metrics out of all the models in Table 3. Con-
figurations with o < 1.0 (e.g., « = 0.75, Sobel=0.5,
SSIM=0.7150) also performed well, likely because global
SSIM also emphasizes non-ROI regions, which dominate
the image. SSIM may undervalue knee-specific improve-
ments. However, some configurations also underperformed
- likely due to suboptimal edge detection or data variability.
Figure C.2 compares the edge-based ROI mask against the
naive approach, showing improved knee coverage.

To further evaluate the best-tuned Sobel-based model
(o = 1.5, Sobel threshold=0.3, dilation size=9), we com-
pared it against the baseline (¢« = 1.0) with parameters
closer to the best defined by Meta. Table 4 summarizes
the results. Figure C.4 is a visual comparison between the
outputs of these two models. Figure C.5 is a visual com-
parison of the most improved slice with the Sobel model.

o | Sobel Thr. | Dil. Size | SSIM | NMSE | PSNR
1.50 0.3 9 0.7164 | 0.0357 | 31.58
0.75 0.5 9 0.7150 | 0.0362 | 31.51
0.75 0.3 9 0.7143 | 0.0365 | 31.46
0.25 0.3 9 0.7141 | 0.0367 | 31.44
0.25 0.5 9 0.7137 | 0.0364 | 31.48
1.50 0.5 9 0.7125 | 0.0364 | 31.46
1.00 0.3 9 0.7119 | 0.0362 | 31.50
0.25 0.4 9 0.7112 | 0.0369 | 31.39
1.25 0.4 9 0.7111 | 0.0368 | 31.38
1.25 0.5 9 0.7100 | 0.0366 | 31.40
1.50 04 9 0.7099 | 0.0369 | 31.41
1.25 0.3 9 0.7042 | 0.0383 | 31.23
1.00 0.4 9 0.7042 | 0.0372 | 31.29
1.00 0.5 9 0.6999 | 0.0396 | 30.85
0.75 0.4 9 0.6680 | 0.0397 | 30.83

Table 3. Edge-based ROI configurations sorted by SSIM. Random-
ness in data loading may contribute to performance variations.

The metrics suggest that we have not been able to make an
improvement with this method. The visualizations indicate
that the Sobel model’s outputs better match the ground truth
in the knee portion but not the background noise, possibly
explaining the suboptimal metrics.

« | Sobel Thr. | Dil. Size | SSIM | NMSE | PSNR
1.0 - - 0.7217 | 0.0344 | 31.8516
1.5 0.3 9 0.7213 | 0.0345 | 31.8437

Table 4. Comparison of best-tuned ROI-weighted loss vs. baseline

4.3. Cold Diffusion

The Cold Diffusion model was trained with the parame-
ters listed in Table B.3 by applying a progressive undersam-
pling mask to the fully sampled k-space. Since training the
Cold Diffusion model is very computationally expensive,
we were unable to assess the effect of the ROI-weighted loss
with a fully-trained model with our given resources, and
were also unable to optimize the weights of the loss func-
tion and the parameters of the Sobel algorithm. Instead, we
trained using the optimized hyperparameters for the U-Net
model (see Table B.4 and Section 4.2).

The image reconstructions produced by the under-
trained model are not ideal and do not allow to draw a con-
clusion on the advantage of using ROI-wighted loss, as can
be seen in Figure C.6 (for uniform L1 loss) and Figure C.7
(for ROI-weighted L1 loss). However, comparison of the
evaluation metrics (see Section 2.3) obtained with the Cold
Diffusion model trained with the equally weighted L1 loss
function to those obtained with the model trained with the
ROI-weighted loss function presented in Table 5 demon-
strate modest benefit from using the ROI-weighted loss.
The metrics shows that the ROI-weighted loss helps the



model deliver more refined reconstructions in ROIs, which
leads to better image quality as compared to L1 loss or the
U-Net model.

Loss Function SSIM | NMSE | PSNR
ROI-weighted 0.7970 | 0.0075 | 32.1300
Equally-weighted L1 | 0.7653 | 0.0078 | 31.8660

Table 5. Comparison of metrics for Cold Diffusion models with
equally-weighted L1 loss and ROI-weighted loss functions. The
metrics are averaged over 20 measurements to smooth the ran-
domness in data loading.

5. Conclusion

We showed that training the U-Net model with the
ROI-weighted loss function produces more accurate im-
age reconstruction measured in terms of PSNR, SIMM and
NMSE. We first tried manually selected ROI (at the cen-
ter of the image) and then generalized the approach using
the Sobel edge detection framework, which suggested fur-
ther improvement in image quality. We ran multiple exper-
iments to find the best loss function weight and the Sobel
algorithm parameters.

We then applied the ROI weighting with the parameters
optimized on the U-Net model to the Cold Diffusion model.
Due to the computational intensity of the Cold Diffusion
model training, we had to reduce the training steps and use a
subset of the training data. Moreover, even the image recon-
struction was time consuming. Consequently, we could not
prove that the ROI-focused loss function produces superior
under-sampled image reconstruction with the fully trained
Cold Diffusion model. However, the results observed with
the “under-trained” model look promising, as discussed in
Section 4.3. We hope to be able to continue working to-
wards a fully-trained Cold Diffusion model. However, with
our computational resources it may take several months.
For the ideal end product, the loss function weights and the
Sobel edge-detecting parameters would be calibrated using
the Cold Diffusion model itself, rather than using the opti-
mal parameters calibrated on the U-Net model. However,
this will likely be prohibitively computationally expensive.

For future work, the Stanford fastMRI+ dataset [5] could
be explored, as it provides expert annotated regions of inter-
est (ROIs) such as bounding boxes and labels for 22 differ-
ent pathology categories. This could enable more precise
supervision compared to our current approach, which either
uses a centrally defined manual ROI or treats the entire knee
as the region of interest.

6. Work Division

Summary of contributions are provided in Table A.1 in
Appendix A.
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A. Appendix: Work Division

Student Name

Contributed Aspects

Details

Luis Tupac

Project Management, Custom Loss
Implementation, Evaluation, Re-
port Writing

Organized team meetings, set project milestones, and fa-
cilitated idea development. Designed, wrote validation
scripts and tests, defined metrics, and implemented the
ROI-weighted loss function across U-Net as shown in
sections 2.3 and 4.1. Ran experiments validating the loss
function with naive ROI detection. Led contributions to
the first draft by structuring the paper, drafting answers to
key guiding questions, and formatting the document for
clarity.

Naveen Vellaturi

Sobel Edge Detection, Evaluation,
Report Writing

Implemented Sobel edge detection. Tested and visual-
ized various Sobel thresholds to optimize ROI mask gen-
eration. Trained all edge-based ROI models in Section
4.2 and evaluated their performance using SSIM, NMSE,
and PSNR. Contributed to the paper, including sections
on experiments, results, and general edits.

Igor Kamenetskiy

Cold Diffusion model optimization
and training, Evaluation, Report
Writing

Modified publicly available Cold Diffusion code to re-
duce training time, save/load the checkpoints and output
the results metrics. Trained the model, produced and ana-
lyzed the results using SSIM, NMSE, and PSNR metrics
(Section 4.3). Contributed to the paper, including sec-
tions on the approach, experiments, results and conclu-
sion.

Emma Resmini

Cold Diffusion model with ROI-
weighted loss training, Evaluation,
Report Writing

Trained Cold Diffusion model with ROI-weighted loss
function. Additionally, optimized training code to use
multiple GPUs when available, which accelerated train-
ing time, and adjusted testing and visualization scripts to
ensure reproducibility. Contributed to the paper, includ-
ing sections on the approach, experiments, and results, as
well as general edits.

Table A.1. Contributions of team members.




B. Appendix: Training Configurations

Parameter Value
Loss Function | L1
Optimizer RMSProp
Epochs 5
Learning Rate | 0.001
Channels 32
Weight Decay | 0.0

Table B.1: Baseline training configuration used across UNet experiments

Parameter Value
«a 1.25
Channels 128
Dropout Probability 0.0
Input Channels 1
Learning Rate 0.001
LR Gamma 0.1
LR Step Size 40
Number of Pool Layers | 4
Output Channels 1
ROI Size 100
Weight Decay 0.0

Table B.2: Parameter set for best-performing ROI configuration

Parameter Value
Loss Function L1
Optimizer Adam
Learning Rate 0.00002
Layers 4

Initial Channels | 64
Weight Decay 0.0

Table B.3: Training and reconstruction parameters for the Cold Diffusion
model with L1 loss

Parameter Value
Loss Function ROI

« 1.5
Sobel thresh. 0.3
Dilation size 9
Optimizer Adam
Learning Rate 0.00002
Layers 4

Initial Channels | 64
Weight Decay 0.0




| Parameter | Value |
Table B.4: Training and reconstruction parameters for the Cold Diffusion
model with ROI-weighted loss




C. Appendix: Visual Results
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Figure C.1. Visual comparison of ground truth, baseline output, and ROI-weighted output («« = 1.25, ROI size=100). The red box
shows the region that was upweighted during training. While the reconstructions aren’t noticeably different, the ROI-weighted output
outperformed the baseline output in SSIM, PNSR, and NMSE.
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Figure C.2. Visual comparison of the undersampled input, the predictions along with the MSE and SSIM metrics, the ground truth, and the
prediction with the ROI mask overlay for the model that used the Naive ROI mask vs the model with the Edge-based ROI Loss.
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Figure C.3. Visual comparisons of some of the produced ROI masks with different values for the Sobel Threshold. 0.4 produced the mask
that covered the greatest portion of the knee.
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Figure C.4. Visual comparison with the outputs of the baseline and Sobel ROI models mentioned in Table 4



Ground Truth

Baseline Output

ROI-Weighted Output

Figure C.5. A visual comparison of the outputs of the baseline and Sobel ROI models mentioned in Table 4 with the most improved slice
based on ROI loss.
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Figure C.6. Sample result of the image produced with the Cold Diffusion model with uniform L1 loss trained to 35,000 iterations.

Ground Truth Baseline Reconstruction Cold Diffusion with ROI-weighted loss

Figure C.7. Visual comparison of ground truth, baseline output, and ROI-weighted loss output. The ROI-weighted output produces more
granular details than the baseline.



