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Abstract paper aims to develop a recommendation system for find-

Our project, Activity Finder, is an interactive tool that
helps users discover nearby events based on interests, lo-
cation, and weather conditions. Our app automates event
categorization and delivers real-time information, integrat-
ing factors such as time of day and weather. By clustering
events by type and proximity and providing dynamic visu-
alizations on an interactive map, the app caters to locals,
travelers, and spontaneous users

1. Problem Introduction

Cities are becoming more dynamic, making it harder to
find relevant activities and events in real-time. Current apps
allow users to find current events only by searching popu-
lar venues, then require them to visit individual websites to
receive information about what is happening around them.
Furthermore, their showings typically only include the most
popular, ticketed events. Activity Finder is an interactive
tool that helps users discover nearby events based on their
interests, location, and the weather. Users can filter events
by type, time, or distance, while the app uses historical
weather data and forecasts to alert them to possible disrup-
tions. It introduces a range of events, from popular concerts
to local recreational meetups.

2. Project Github Link

Project GitHub

3. Literature Survey

Local Event Detection Scheme by Analyzing Relevant
Documents in Social Networks The paper presents method-
ology for detecting local events by leveraging geographical
data and social network documents like posts, comments
and threads. It gave us insight on how to validate our model,
and replicate the keyword graph with our data. [/

Intelligent Event Finder and Management System The

ing events and managing logistics, whether users are host-
ing or joining. The event registration system automates pro-
cesses such as ticketing, registration, posting, and certificate
issuance. We referenced the front-end design from the pa-
per and improve the user experience for event recommen-
dations. [2]

Geospatial Keyword Graph for Extracting Spatial In-
formation from Social Media Data The paper proposes a
method for extracting and visualizing geo-information from
social media. A keyword based graph to build a struc-
ture that connects places, events, and users. We gained
insight from the detection and spatial analysis framework
from there improved it by including more advanced visual-
ization. [3]

Atmosfy: Strategic Guide on How to Build a Great Prod-
uct Roadmap Atmosfy is an app that allows users to dis-
cover new places of interest (mainly dining) by video shares
of past customers to each of the businesses. Their social me-
dia style of location sharing is user friendly, but their map
only shows established businesses. Our website offers sim-
ilar, including live events. [4] A GIS methodology for the
analysis of weather radar precipitation data. This paper
used ARCGis to process and analyze weather data. The
interface gave better and more user-friendly rainfall pre-
dictions. Our performs similarly, considering rainfall pat-
terns to re-suggest events depending on how extreme out-
door weather will impact an experience. [5] Dynamic and
accurate location college bus tracking System using Google
API. This system gave accurate real-time location infor-
mation for college buses, ensuring students would have the
most information to reach their classes on time. The col-
lege bus tracking system used Google API to accurately
track bus movements and provide precise location updates.
It also added a feature that allowed students to track where
the buses were manually, which was then broadcast to other
tracking system users, improving accuracy. [6]

Aurigo, TripBuilder Aurigo and TripBuilder both pro-
vide innovative approaches to creating personalized, pre-
planned itineraries. Aurigo uses POI (Points of Interest)
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data from sources like Yelp and Google Maps to help users
explore and optimize tour paths based on geographic prox-
imity, with visualization tools like the "Pop Radius.” [/7]
Similarly, TripBuilder leverages crowd-sourced geo-tagged
photos from Flickr to optimize tourist itineraries, using the
Generalized Maximum Coverage (GMC) model to maxi-
mize user satisfaction by covering popular points of inter-
est. Both papers offer valuable insights into how user pref-
erences and location-based services can enhance event dis-
covery, which we applied to improve our app’s real-time
clustering and event recommendation algorithms. [8] Event
Aware Focuses on conferences, using a tag-based algorithm
to recommend sessions and exhibitors based on real-time
contextual factors like location and time. While this system
personalizes agendas for conference attendees, it remains
limited to fixed venues and specific types of events. [9] Use
of real-time data and contextual filtering provided intuition
to our approach to event recommendations based on dy-
namic factors such as weather and time windows, helping
us make the user experience more adaptive.

DuckDB:An embeddable, lightweight analytical
database, optimized for read-heavy workloads with colum-
nar support performance optimal for tasks like feature
extraction. The engine currently supports parallel ex-
ecution for inter-query workloads. Density-Based
Spatial Clustering of Applications with Noise (DBSCAN)
is a location based clustering method, which helps in
identifying clusters of arbitrarily shape. We plan to cluster
events by location to create a richer experience and avoid
overwhelming users within a set radius. A graph based DB-
SCAN is reliable as we can set constraints not confined to
typical geometric shapes. Efficient Estimation of Word
Representations in Vector SpaceThe paper presents neural
network architectures for efficient word representation as
N-dimensional vectors, enabling semantic comparison.
Project plans to tag event using similarity matches of vector
representation. High dim vectors are more accurate but
adds to computation cost.

4. Architecture Diagram
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Figure 1. Architecture and Tech Stack
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5. Design Details of Tiers
5.1. UI & Map Framework

We leverage Mapbox and React to create a responsive,
interactive, and filterable map visualization. The main com-
ponents include:

5.1.1 Tile Layer and OpenStreetMap Map

A tile layer from OpenStreetMap is added to the map, ren-
dering the base map with elements such as streets, rivers,
buildings, etc., providing essential geographical context. To
enhance the user experience, a loading screen animation
was implemented to inform the user while the map is load-
ing and during DBSCAN clustering operations.

Loading map...

Figure 2. Loading animation
on Map loads.

Figure 3. Current Events Map
showing activities in Queens
are of New York.

5.1.2 Marker Clustering

When multiple event markers are positioned close to each
other, they appear as a single clustered marker based on the
zoom level. As users zoom in, the clustered markers sep-
arate into individual markers, allowing users to view each
event independently. This interaction enhances readability
and performance in areas with dense event locations. Users
can select a cluster zone within their area of interest before
exploring individual events in detail.
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Figure 4. Current Events Map showing clustered markers in
Brooklyn and Manhattan areas.



5.1.3 Dynamic Data Rendering and Filtering

A JSON file retrieved from a server call to the database dy-
namically updates the displayed markers without reloading
the map. This approach enables users to stay up-to-date on
events near their point of interest. The Haversine formula
is used to calculate distances and filter events by proximity,
displaying only those events within the specified maximum
distance.
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Figure 5. Filtering options for event type, date, distance, and
weather conditions

5.1.4 DBSCAN Clustering

DBSCAN clustering is triggered by the DBSCAN button in
the UI (below the umbrella icon). When activated, the ap-
plication queries the dedicated API DBSCAN endpoint to
generate new clustered data with a cluster ID field. This
dataset is returned to the UI, where it dynamically updates
the map markers, changing their colors based on their as-
signed cluster IDs. This visual differentiation makes it eas-
ier for users to identify clusters and explore related events
within each group.
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Figure 6. Markers grouped by
color after DBSCAN.

Figure 7. Cluster ID being
displayed

5.1.5 User Location, List View, and Custom Buttons

The user’s current location or selected point of interest is
represented by a custom icon. Each event is displayed as a
Leaflet marker, and we are customizing markers based on
event type. Unique marker icons increase the map’s visual
appeal and facilitate easier event selection. Each marker in-
cludes popup bindings to display event information (e.g.,
name, type, description, start/end times, weather, and
distance). When users click on a marker, a popup appears,
providing quick access to event details without navigating
away from the map. To improve event organization, we
implemented a list view option that displays events in a
structured, scrollable format. Users can toggle between the
list view and the map view using the custom list button on
the bottom right. This toggle is seamless and does not re-
quire any re-rendering or any downtime of the application.
To help users navigate the map and quickly find their loca-
tion, we implemented a ”Locate Me” button represented by
the target icon on the bottom right. This button provides a
seamless and smooth transition by zooming in on the user’s
current location, regardless of where they are on the map.
This feature enhances usability and ensures users can reori-
ent themselves effortlessly while exploring events.
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Figure 9. Events organized in

Figure 8. Event details and scrollable list

icon design.

5.2. API Server Framework

We are hosting a local server to manage the connection
between the frontend visualization and the “gold layer” ta-
ble in the database. Two main API endpoints have been
defined as follows:

5.2.1 Filter Data Endpoint
* Resource Path: <host>/api/run-dbscan
e Method: POST

* Description: Runs DBSCAN on events within a spec-
ified datetime and distance from user location.



* Response: A JSON object with two sections:

— Events: Array of filtered events within the
boundary and datetime, including:
* event_name
* type/tag
* description
* start
* end
* cluster_id
— Weather Information: Weather details for the

user’s location, such as temperature, rain, date
time.

5.2.2 Get Filtered Data Endpoint
¢ Resource Path: <host>/api/get—events
* Method: GET

* Description: This endpoint provides a predefined set
of event data, useful for quickly populating the fron-
tend UI with markers to display.

* Response: A JSON object containing:

— Sample Events: Array of filtered events within
the boundary, including:

* event_name
* type/tag

%+ description
* start

* end

— Weather Information: Weather details for the
user’s location, such as temperature, rain, date
time.

5.2.3 Weather API

We used the Weatherstack API to collect real-time and his-
torical weather data, retrieved one day at a time. Our
Python script organizes the data into columns like Location,
Country, Region, Coordinates, Timezone, Time, UTC Off-
set, Temperature, and Weather Code. This enables precise
weather insights to enhance user event experiences. Weath-
erstack offers a free API reporting current weather con-
ditions for any latitude and longitude combination in the
world. We classify three-number weather code into four
categories: Sunny, Windy, Rainy, and Snowy. Our code
calls the lat/long combination from the API key and sec-
tions out the weather code, classified into one of the four
groups. The front-end server takes the weather condition
and applies the appropriate overlay to the UI, showing users

if their outdoor events may be rained out. K-Means event
type clustering is also affected, as the algorithm will begin
to suggest events indoors that a user may prefer at the cur-
rent moment.

5.2.4 DBSCAN(Density-Based Spatial Clustering of
Applications with Noise) on selected locations

Once the points of interest are retrieved by querying a
database with specified parameters like event type, geo-
graphic coordinates, and a distance radius, we applied DB-
SCAN clustering to create a more intuitive and interactive
user experience on the map. Our implementation of DB-
Scan uses the Haversine distance formula, which is used to
calculate the great-circle distance between two points on a
sphere. DBScan identifies clusters based on: the maximum
haversine distance allowed for two points to be considered
in the same cluster, and the minimum points required to
form a dense cluster. Cluster neighborhoods are defined by
the equation: N.(p) = {¢ € D | dist(p,q) < €} then a
new point is density-reachable from point p if q is within
the neighborhood of p, shown here: ¢ € N.(p).

Why use DBScan rather than regular radius-based fil-
tering?

1. DBScan identifies dense clusters to suggest events
outside of a typical range of a predefined shape (such as a
circle for radius). It can group clusters based on the vary-
ing density, which is very helpful in high-population areas
where major event density is not uniform. DBScan also cap-
tures natural groupings, such as events close to each other
by being located along a street or in a park. 2. DBScan is
also able to handle noise effectively. It identifies points out-
side clusters, helping eliminate isolated, unpopular events.
This will allow users to travel from events effectively, keep-
ing them out of dangerous or unfamiliar areas. 3. Lastly, for
large datasets, DBScan does not have to recalculate the dis-
tance from the user each time they move to select and sug-
gest events. By using spatial indexing, it can cluster events
without having to calculate individual distances to the user
for every point.

5.2.5 K-Means for Event Type Clustering

K-means reduces the intracluster variance, or the sum of
squared differences between data points and a defined clus-
ter centroid. The cluster assignment is given by minimiz-
ing the squared Euclidean distance between data point and
centroid. The value of each centroid must then be updated
as each data point is included in its cluster. The follow-
ing equation shows centroid computation as the mean of all
points assigned to the cluster.



Because event types are categorical, one-hot encoding is
used to give numerical values to their assigned event type
categories. Events are then grouped into clusters by on
their event type vectors provided by the one-hot encoding.
Events in the same cluster share common attributes, such as
being outdoors, music-related, etc. Using k-means, users
can receive recommendations for events similar to their
preferences. For example, if a user selects “street-event”,
our equation will classify and recommend other events with
the same event type. However, the equation becomes in-
creasingly useful by implementing enhanced recommenda-
tions. For example, if “Central High School Baseball game”
is classified under “amateur sporting events”, but there is
no other relevant sporting events in the area, a user may be
recommended “NYC stick ball” in a category type of “out-
door recreation”. By minimizing the intracluster variance,
K-means ensures that the recommended events are highly
similar and tailored to previous interest, increasing satisfac-
tion of the end user.

5.3. Data Server
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Figure 10. DataServer Layer

Data Server would host main tables for APIs to fetch
data relevant for the API. It primary function are described
below.

5.3.1 Sample Data

25+ million New york city public events records from 2009-
2025. INYC Permitted Event Data

5.3.2 Data Server Pipeline

The data server process begins by loading raw CSV files,
which may be mounted or stored in a bucket. This design
leverages few innovations to optimize data ingestion and
preparation.

Dynamic CSV Ingestion with Custom Header Map-
ping and UDF Support This feature allows ingestion of
different CSV files with varied headers. Consumers can

Figure 11. Database Schema

provide a configurable mapping of headers, enabling inges-
tion of dynamic data without relying on a fixed CSV for-
mat. Consumers can also provide User Defined Function
(UDF).

The UDF approach allows consumers to supply a func-
tion that supports the necessary formatting or manipulation
of data. This adds flexibility for ingesting differently struc-
tured information. In our case, this was particularly useful
for extracting the location from an event address. Below is
an example of data mapping for eventAddress using a UDF
for location extraction.

{

"rawDataCSV": "data/NYC_events.csv",
"city": "NewYork",

"state": "NewYork",

"csvMapping": [

{"eventName": "Event Name"},
{"eventDesc": "Event Name"},
{"eventType": "Event Type"},
{"eventStartTime": "Start Date/Time",
"udf": null},

{"eventEndTime": "End Date/Time"},
{"eventBorough": "Event Borough"},
{"eventCity": null, "udf": null},
{"eventState": null, "udf": null},
{"eventZipCode": null, "udf": null},
{"eventAddress": "Event Location"™ ,"udf":
"SPLIT_PART (\"Event Location\",’:’,1)"}
11

The mapping gets turn into dynamic SQL to ingest data.
Dynamic Data Partition for Performance As part of this
feature we split the large raw data into respective partitions
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where city and year combination makes total partitions (see
figure 10).User queries include year and city, narrowing the
search space for better performance. We avoid hash-based
partitioning, as our current strategy improves query routing.
Partition details are stored in a dedicated dimension table.

Location-Latitude & Longitude Cache Database di-
mension create_location_cache_dim_table is used as the
cache for latitude and longitude. Event address is first
looked inside cache before we call API. We use Google
Geocode APIs to extract lat/long from partial addresses
(e.g., 7108th Street between Northern Blvd and 34th Av-
enue”). To ensure reliability and avoid rate-limiting, we
implemented an exponential back-off algorithm.

Find nearby locations Implemented Haversine distance
function using SQL in DB so that we can use SQL query
to find nearby points of interest. Doing this in python was
computationally expensive.

For full design details and data pipeline architecture
please refer to notebook setup dataserver_db _interface
.ipynb

5.3.3 NLP Pipeline and Multi Label Classification

The NLP pipeline supports tagging events with more en-
hanced tags.
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Figure 12. NLP Layer

Feature Engineering for NLP Workflow The
feature engineering process (DataPrep.py) con-
verts raw event descriptions into numerical represen-
tations and labels for model training. @ Raw data is
multi_label_class_event_input_label data.csv

o Text Pre-processing: Convert text to lowercase, re-
move punctuation, and eliminate stop words.

* Embedding Generation: A pre-trained BERT base
model (uncased) is used to extract semantic embed-
ding vectors from text

* Multi-hot Label Encoding: Represent each event’s tags
as a multi-hot vector, with 18 unique tags in total.

» Optimization: BERT’s forward pass to get embedding
vector is computation heavy so we have pre-computed
and stored feature and label matrices as PyTorch ten-
sors.

Multi Label Classification Model Training & Result
Metrics We are using a Deep Neural Network model using
pytorch consist of following layers:

MultiLabelClass (

(input_layer): Linear (in_features=768,
out_features=512, bias=True)
(hidden_layer): Linear (in_features=512,
out_features=256, bias=True)
(hidden_layer_1): Linear (in_features=256,
out_features=128, bias=True)

(output) : Linear (in_features=128,
out_features=18, bias=True)

(relu) : RelLU()

(dropout) : Dropout (p=0.3, inplace=False)
(sigmoid) : Sigmoid()

)

Binary Cross-Entropy (BCE) is used as loss function since
each output is independent and represents a binary choice:
either the tag is present (1) or absent (0). Sigmoid is used
in the output layer so that each output can have full prob-
ability from O to 1. ReLU is used as the activation func-
tion for capturing any non linearity. Finding and evalua-
tion The training results were captured by running 20-30
epochs. The classification results demonstrate significant
class imbalance, with the model performing well on major-
ity classes but poorly on minority classes.

Class | Precision | Recall | F1-Score | Support
0 0.00 0.00 0.00 1
1 0.00 0.00 0.00 610
2 0.00 0.00 0.00 5
8 0.57 1.00 0.72 1522
10 0.59 1.00 0.74 1581
14 0.00 0.00 0.00 57

Table 1. Classification Metrics for Each Class

Assessment: The model shows strong performance on
majority classes (e.g., class 8 and 10) but fails to
classify minority classes due to significant class im-
balance.  For full design and model refer notebook
nlpmultilabel_class_model

.ipynb

6. Summary of Key Innovations

Here is a summary of the innovations discussed in detail
above.

6.1. Visualization

e Pseudo Real-Time Dynamic Data Updating: Seam-
lessly updates data as it arrives.



* Marker Clustering: Efficiently groups nearby markers
to declutter maps.

e Proximity-Based Event Filtering: Filters events based
on user proximity for relevance.

e Customizable and Distinctive Marker Icons: Offers
flexibility with custom icons.

6.2. API Framework

e Standardized API Services: Unified API support for Ul
components.

* Real-Time Weather API: Integrates live weather up-
dates using Weatherstack API.

e Ticketmaster API.Gives historical and future events
from ticketmaster.

* DBSCAN Clustering: Implements DBSCAN for im-
proved user experience.

6.3. Data Server Framework

* Data Ingestion and Mapping: Configurable data inges-
tion with ability to provide mappings and user defined
functions.

* Data Partitioning: Speeds up APIs through optimized
data partitioning.

e Cache Management: Efficient cache for latitude and
longitude data. Usage of Google APIs with exponen-
tial back-off.

* Event Tagging with Neural Networks: Tags events us-
ing multi label classification model.

7. Limitations and Future Extension

The current limitation is the absence of a live source sys-
tem for event data, which could enable real-time updates.
As part of POC we have used Ticketmaster API but not
fully integrated. This API pulls data from every main event
offered by Ticketmaster and organizes it into the required
columns. Introducing real-time capabilities would require
a more distributed system with asynchronous event loading
and the addition of data ingestion APIs. The existing multi-
label classification model needs improvement through the
collection of more diverse and representative data. Ad-
dressing class imbalance is another necessary enhancement.
For scalability, DuckDB will need to be shard-ed to handle
larger datasets effectively. We can think of data being lo-
cal to location can be more efficient and reliable. DuckDB
being light weight may allow us to distributed the DB itself
close to location for which the system is serving.

8. Team Contributions

All team members have contributed a similar amount of
effort.
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